Educational Research to Endorse Productive and Innovative Generation in the 21st Century

16-17 October 2017
Ball Room Grand Mercure Hotel, Medan - Indonesia

Organized by:
Post Graduate School
State University of Medan
North Sumatera, Indonesia
Proceedings of The 2nd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL 2017)

“Educational Research to Endorse Productive and Innovation Generation in The 21th Century”

Grand Mercure Hotel, Medan City, North Sumatera, Indonesia
October 16-17, 2017

Editorial Board

Editorial-in-Chief
Dr. Juniastel Rajagukguk, M.Si (State University of Medan, Unimed)

Deputy Editor
Dr. Saronom Silaban, M.Pd (State University of Medan, Unimed)

International Advisory Board / Scientific Committee
Prof. Dr. Kala Saravanamuthu (University of Newcastle, Australia)
Prof. Arjen EJ Wals (University of Gothenburg, Sweden)
Prof. Dr. Bornok Sinaga, M.Pd (Unimed, Indonesia)
Prof. Dr. Aytekin Isman (Sakarya University, Turkey)
Prof. Peter Charles Taylor, Ph.D., Med., B.Sc., Dip.Ed (Murdoch University, Australia)
Prof. Dr. Mukhlas Samani, Ph.D (Indonesia)
Prof. Dr. Jailani bin Md. Yunos (University Tun Hussein on Malaysia)
Prof. Dr. Nurahimah Mohd. Yusuf (UTM, Malaysia)
Assoc. Prof. Dr Pedro Isaiaas (University of Queensland, Australia)
Assoc. Prof. Elisabeth Taylor, Ph.D (Murdoch University, Australia)
Dr. Bambang Sumintono, M.Ed (Universiti Malaya, Malaysia)
Dr. Isma Widyaty, M.Pd (UPI, Indonesia)
Prof. Dr. Syahrul R, M.Pd (UNP, Indonesia)
Prof. Amrin Saragih, MA., Ph.D (Unimed, Indonesia)
Assoc. Prof. Ade Gafar Abdullah, M.Si (Universitas Pendidikan Indonesia)
Eng. Asep Bayu Dani Nandiyanto (Universitas Pendidikan Indonesia)
Prof. Dr. Hartono, M.Pd (Universitas Negeri Semarang)

Please cite the proceeding as “Proceeding of the First Annual International Seminar on Transformative Education and Educational Leadership Vol. 2” with the following abbreviation: Proc. Aist., 2
Preface

The 2nd Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL with web link is http://aisteel2017.unimed.ac.id/) was held on October 16 -17, 2017 in Medan City, Indonesia. This conference was organized by Postgraduate School, State University of Medan (Unimed) and is the routine agenda at Unimed now. The Second Annual International Seminar on Transformative Education and Educational Leadership’ is realized this year with various presenters, researchers, lecturers and students from universities both in and out of North Sumatera participate in the theme of which is “Educational Research to Endorse Productive and Innovative Generation in the 21st Century.”

2nd AISTEEL is the annual international seminar with main aim is to discuss of recent research special for Transformative Education and Education Leadership. Several topics like: Teachers Education Model, Research Global Issue in Education, Mathematics and Science Education, Social, Language Education, Vocational Education, Curriculum, Economic, History and Management Education have been discussed at the 2nd AISTEEL 2017. 2nd AISTEEL international seminar provided experts’ view on transformative education and educational leadership as well as curriculum article presentation. There were five keynote speakers have been came Professor Keiichiro Yoshinaga, Dr. Bambang Sumintono, Dr. Sitti Maesuri Patahuddin, and Dr. Yulia Rahmawaty. The organizer had been use online submission system to receive all abstract, full paper and also communication with authors. All of information include with comment of reviewer can be checked real time by author.

Chairperson

Dr. Rahmad Husein, M.Ed
Welcoming Speech of Director of Postgraduate School State University of Medan

The Second Annual International Seminar on Transformative Education and Educational Leadership (AISTEEL)

The honorable,
- Rector of State University of Medan, Prof. Dr. Syawal Gultom, M.Pd.
- Vice Rectors of UNIMED
- Professor Keiichiro Yoshinaga, PhD, Institute of Liberal Arts and Science, Kanazawa University – Japan
- Dr. Bambang Sumintono, M.Ed., University Malaya – Malaysia
- Dr. Sitti Maesuri Patahuddin, Faculty of Education, Science, Technology and Mathematics, University of Canberra – Australia
- Yuli Rahmawati, Chemistry Education Program, Universitas Negeri Jakarta
- Deans of Faculties of Education, Languages and Arts, Social Sciences, Natural Sciences and Mathematics, Engineering, Sports Sciences, and Economics
- Vice Directors of Postgraduate School of UNIMED
- All speakers, lecturers, researchers, students, and participants

Good Morning

Welcome the honorable guests speakers Professor Keiichiro Yoshinaga, Dr. Bambang Sumintono, Dr. Sitti Maesuri Patahuddin, Assoc. Prof. Emilia Zulmira de FAN, and other speakers, lecturers and students from outside and inside Unimed to this international seminar which is the routine agenda at Postgraduate program of Unimed now. I’m glad that ‘The Second Annual International Seminar on Transformative Education and Educational Leadership’ is realized this year with various presenters, lecturers and students from universities both in and out of North Sumatera and participate in the theme of which is “Educational Research to Endorse Productive and Innovative Generation in the 21st Century.”

Ladies and Gentlemen,

In this second seminar exels the first one related to the administration by online and the publication index by either Thomson Reuters or Google Scholar. By the new policy on student’s publication, postgraduate program really matches the system, particularly for the students who will sit in the oral defence examination. Through the seminar, the postgraduate students improve their article journal writing and it is proved by many articles are submitted by the students.

The plenary speakers coming from 15 provinces in Indonesia will present topics covering multi disciplines. They will contribute a lot of inspiring inputs and new knowledge on current trending educational research topics all over the world. The expectation is that all potential lecturers will share their research findings to educational scientists and researchers as well for improving their teaching process and quality. Thus, this will contribute to the next young generation researchers to produce innovative research findings in education and educational leadership contexts.

This second seminar continues the promotion of the first sequel ‘Developing Future Teachers’ Education Model. Therefore, the propose of this second seminar on the transformative education and educational leadership research will trigger the young professional lecturers and educators to compete in the invention of innovotive educational teaching and learning strategies, techniques and leadership.

I hope that the scientific attitude and skills through research will promote Unimed to be a well-known university which persists to be developed and excelled in the future.

Thank you the Rector of Unimed who always supports us in organizing the seminar. Thank you all guest and plenary speakers. Special thanks to both steering and organizing committee who have well-coordinated and colaborated in actualizing the seminar.

Director of Postgraduate Unimed

Prof. Dr. Bornok Sinaga, M.Pd
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Effect of Using Collaborative Learning Strategy on The Student’s Achievement in Writing Descriptive Text</td>
<td>1</td>
</tr>
<tr>
<td>Nursyah Handayani</td>
<td></td>
</tr>
<tr>
<td>The Development of Multicultural Based Teaching Materials on the Observation Report Text for Senior High School Student</td>
<td>5</td>
</tr>
<tr>
<td>Nurhasanah Permata Sari Sembiring, Khairil Ansari, Mutsyuhito Solin</td>
<td></td>
</tr>
<tr>
<td>The Power Behind Advertisement</td>
<td>10</td>
</tr>
<tr>
<td>Endang Larasati</td>
<td></td>
</tr>
<tr>
<td>The Effect of Using Audio Visual Media on Student’s Vocabulary Mastery</td>
<td>13</td>
</tr>
<tr>
<td>Resti Citra Dewi</td>
<td></td>
</tr>
<tr>
<td>Ideational Taxonomic Relation of Hata Pangupa in Tapanuli Selatan Wedding Ceremony</td>
<td>17</td>
</tr>
<tr>
<td>Mutia Nasution</td>
<td></td>
</tr>
<tr>
<td>Pal’s Leadership Style and Teacher’s Performance of Islamic Junior High State School (MTsN) Hamparan Perak Deliserdang Distric</td>
<td>21</td>
</tr>
<tr>
<td>Nurmalu, Maria Ulfah Handayani, Denny Khairani, Desi Prawita</td>
<td></td>
</tr>
<tr>
<td>The Influence of Work Motivation on Teacher’s Job Performance of Vocational High School in Medan</td>
<td>24</td>
</tr>
<tr>
<td>Darmawati, Sri Melfayetti, Selamat Triono Ahmad</td>
<td></td>
</tr>
<tr>
<td>Error Analysis by Using Tenses of Senior High School</td>
<td>28</td>
</tr>
<tr>
<td>Hariyanto</td>
<td></td>
</tr>
<tr>
<td>The Traditional Custom and Ceremonial Tradition in Suku Anak Dalam Language</td>
<td>32</td>
</tr>
<tr>
<td>Pati Ayu Lestari</td>
<td></td>
</tr>
<tr>
<td>The Impact of Internet Marketing on Success of Women Micro, Small and Medium Enterprises Innovation as Intervening Variable</td>
<td>36</td>
</tr>
<tr>
<td>Fivi Rahmatus Sofiyah, Ami Dilham</td>
<td></td>
</tr>
<tr>
<td>The Effect of Cooperative Integrated Reading and Composition (CIRC) Technique on Students Reading Comprehension</td>
<td>40</td>
</tr>
<tr>
<td>Linda Efrina Nasution</td>
<td></td>
</tr>
<tr>
<td>Translation Shifts in Translating Didong from Gayonese in to Bahasa Indonesia</td>
<td>44</td>
</tr>
<tr>
<td>Wike Yurida</td>
<td></td>
</tr>
<tr>
<td>The Effect of Team Assisted Individualization (TAI) Strategy on Student’s Reading Comprehension</td>
<td>48</td>
</tr>
<tr>
<td>Khairuni Syafitri</td>
<td></td>
</tr>
<tr>
<td>The Effect of Organizational Culture on Working Disciplines of Madrasah Ibtidaiyah Head Master in Deliserdang</td>
<td>53</td>
</tr>
<tr>
<td>Muhammad Rifai’i, Syafaruddin Siahaan, Siman Nurchadi</td>
<td></td>
</tr>
<tr>
<td>Student’s Achievement on Reading Comprehension in Narrative Text by Using Think Pair Share Technique (TPS) at SMPN 1 Lubuk Pakam</td>
<td>58</td>
</tr>
<tr>
<td>Eprima Lestari Hutabarat</td>
<td></td>
</tr>
<tr>
<td>Ideational Taxonomic Relations of Hobar on Parpokatan Orja of South Tapanuli</td>
<td>63</td>
</tr>
<tr>
<td>Novria Grahmayunari</td>
<td></td>
</tr>
<tr>
<td>The Effect of Using Task Based Learning Method on the Student’s Achievement in Reading Comprehension</td>
<td>69</td>
</tr>
<tr>
<td>Nilam Ulami Siregar</td>
<td></td>
</tr>
<tr>
<td>Relationship of Initiation Structure and Consideration with Effectiveness Leadership</td>
<td>72</td>
</tr>
<tr>
<td>Wanti Simanjuntak, Syaiful Sagala</td>
<td></td>
</tr>
<tr>
<td>The Effect of Storytelling Method on Students Writing Narrative Text Ability at the Eleventh Grade Students of MAN Panyabungan</td>
<td>77</td>
</tr>
<tr>
<td>Armita Novriana Rambe</td>
<td></td>
</tr>
</tbody>
</table>
The Implementation of Curriculum 2013 in Vocational High School 4 Takengon
Zainal Arifin, Herbert C.B. Manalu, Rini Deliana, Fitri Ariyanti

The Difference of Mathematical Problem Solving Ability by Using Student Teams Achievement Division (STAD) and Direct Instruction on System Linear Equation Two Variable in Grade VIII SMP Negeri 11 Medan
Faradilla Bafaqih, Cecep Nandar

The Influence of Problem-Based Learning and Every One is A Teacher Here Models on Higher Order Thinking Skills in Environmental Pollution Topics
Kurnia Putra, Hasruddin, Ahmad Rafiqi Tantawi

The Effect of Applying Task Based Learning (TBL) Approach on The Student’s Ability in Writing Descriptive Paragraph
Vijay Khana

Teacher’s Language Style in English Course Class
Dyan Yosephin Hutagalung

Differences Between Students Mark Taught With Co-Operative Learning Model Type TGT With Guess The Words Media Compared With Students Mark Taught With Co-Operative Learning Models With Words Square Media in Hydrocarbon Subject
Haruni Siregar, Gulmah Sugiharti

Language Used by Male and Female of Darul Ilmi Murni
Syakri Hidayati

The Use of Journal Writing in Improving Student’s Writing Skill of Recount Text
Muhammad Ilham Adha

Teacher and Student Perceptions Toward Practical Implementation Obstacles at Learning Chemistry
Sepra Pajar, Ramlan Silaban, Zainuddin Muchtar

The Analysis of of the Implementation and Problems of Lab Work on Chemistry Learning
Elvira Lastri, Iis Siti Jahro, Marham Sitorus

The Implementation of Using Library Card and ICT Based Library Service System in Increasing Reading Interest of Primary School Students at Tanjung Gading of Batu Bara Regency
Suci Amalia, Asih Menanti

Project Based Learning Tools Development on Alcohol and Ether Materials at Natural Science Faculty State University of Medan
Nadia Armina Ramud, Jamalum Purba

The Development of Teaching Material to Write Explanation Text Based on Mind Map
Pienti Mala Ningsih Manalu, Biner Ambarita, Rosmawaty Harahap

Improvement of Student Learning Outcome Using Model of Collaborative Based Lesson Study with Student’s Worksheet on Materials Hydrolisis
Agus Muliaman, Laila Majnun Hutagaol

The Application of Comic Learning Media to Improve Student’s Achievement on Reduction and Oxidation Reaction Topic
Anggi Desviana Siregar, Rini, Herdini

The Application of Cooperative Learning Round Robin to Improves Student Learning Achievement on the Subject of Electrolyte-Nonelectrolyte and Redoxin Class X SMAN 1 Seberida
Nora Santi, Betty Holiwarni, Johni Azmi

The Effect of Combination Cooperative Learning Models Toward Learning Result
Sapnita Idamarna Daulay

The Maintenance of Hokkien Among Chinese Speakers in Stabat
Widya Ningsih

Effect of Blended Learning Model and Learning Style to Civic Education Learning Results in Class VII in Junior High School Panca Budi Medan
Madina Qudsia Lubis, Reh Bungana Br.Perangin-angin, Mursid

EFL Student’s Uses of Um as Fillers in Speaking
Eka Riana
The Influence of Role Playing Method and Self Concept of Social Skills of 5-6 Years Old Child............. 172
Rabiah Hanum Hasibuan, Anita Yoe, Yusnadi

The Effect of Learning Approach and Personality Type Towards Learning Outcomes.......................... 178
Dwoy Dinda Sari, Julaga Situmorang, Busmin Gurning

The Effect of Learning Models and Critical Thinking Skills on Social Science Learning Outcomes........ 183
Juriah Siregar, Julaga Situmorang, Baharuddin

The Effect of Suggested Method on Student’s Achievement in Vocabulary... 188
Heppy Yersin Digita Purba

Application of Active Learning Strategy Type Everyone is A Teacher Here (ETH) to Increase Student Activity and Learning Outcomes in Chemistry on Salt Hydrolysis... 193
Wulta Fajrun, Darra Utari Ningsih, Sri Adelila Sari, Habibati

The Effect of Learning Strategy and Type of Personality on Student’s Achievement in Economic Science... 198
Dewi Shara Dalimunthe

Development of Learning Tools Based on Realistic Mathematics Education of Ethnomathematics Nuances to Improve Mathematical Communication Skill Students in Junior High School 2 Percut Seiutuan... 202
Rizqi Jamiah, Edi Syahputra, Kmu, M. Amin Fauzi

The Impact of Cooperative Learning Strategy and Learning Interest Toward the Learning Result of Second Year of Senior High School Students in 2016/2017... 208
Riswan Sianturi, Abdul Muin Sibuaa, Edward Purba

The Development of Flash Program as a Media of Chemistry Learning on Chemical Equilibrium........ 210
Lenni Khoitmah Harahap, Albinus Silalali, Iis Siti Jahro

The Ethnic Mandailing Tradition of Courtship (Markusip) and Revitalization Efforts in the Formation of the Character Youth... 214
Riadi Syafputra Siregar, Ratih Baiduri, Robert Sibarani

The Effect of Education on Unemployment Rate in Indonesia... 218
Rahmat Putra Ahmad Hasibuan, Dede Ruslan, Fitrawaty

Development of Explanatory Text Materials Based on Problem Solving in Senior High School Pematangsiantar... 222
Tiarma Nova Intan Malasari, Biner Ambarita, Malan Lubis

Learning Model of Strengthening Vocational Life Skills With Entrepreneurship Knowledge to Improve Student Learning Outcomes... 226
Husni Wardi Tanjung

A Critical Discourse Analysis Wardah Halal Beauty Advertisements... 229
Ayu Lestari Siregar, Mei Lastri E.F. Butar-Butar

Influence of Creative Problem Solving (CPS) Mathematics Learning Model to Mathematical Problem Solving and Self Efficacy Students of SMA Negeri 3 Binjai... 232
Nurcahaya Hutaseot, Martua Manullang, Ani Minarni

Differences in Mathematics Problems Solving Students With Implementing Learning Model Think Pair Square and Group Investigation in Junior High Schools... 236
Abdul Halim, Edy Surya

The Acquisition of Nouns and Verbs of Mandailingnese by Two-Year-Old Mandailing Children............. 240
Marwah, Amrin Saragih, Sri Minda Murni

Utilization of ICT Learning in Senior High School Teladan Medan... 244
Tengku Salwa Miranti

The Effect of Cooperative Learning Model Based Interactive Media and Interpersonal Communication on Student’s Achievement... 248
Catur Ayu Wialandari, Efendi Napitupulu, Keysar Panjaitan

Developing of Learning Material Based on Problem Based Learning to Increase Student’s Mathematical Reasoning Ability and Self-Efficacy in Grade X SMA Negeri I Medan... 253
Anggi Paramita Daulay, Dian Armanto, Wamintong R
Efforts to Increase A Motivation to Learning Math Using “Program” Learning Model
Linda Sari, Edi Syahputra 257

The Efod of Improving Mathematics Learning Outcome on Quadrilateral and Triangle Matter by Using Gradually Exercise Strategy with The Assistance of Image Media
Ady Putra, KMS, Muhammad Amin Faiz, Yulita Moliq 261

The Difference on Students’ Mathematical Creative Thinking Ability Between Realistic Approach with Conventional in The State Madrasah Tsanawiyah 2 of Medan
Siska Lestari, Zul Amry, Hasratuddin 264

Developing Learning Materials Using Realistic Mathematics Education to Increase Junior High School Students’ Mathematical Disposition and Connection Ability
Syu’aida Hazar Nasution, Izwita Dewi, E.Elvis Napitupulu 269

Developing Learning Materials Using Problem Based Learning to Increase Senior High School Student’s Mathematical Disposition and Representation Ability
Dewi Khairani, Mulyono, Izwita Dewi 275

The Effect of Question Students Have Strategy on The Result of Students Learning in Mathematics
Yuliani Aruan, Edi Syahputra 281

Analysis of Academic Supervision Competence and Managerial Supervision in Improving the Performance of Vocational High School Supervisors in Langsa City
Muhammad Hendra, Saut Purba, Mian Siahaan 284

The Use in Active Learning Strategy of Learning Starts with a Question Type in the Mathematics Learning
Jeni Putria Efif, Ani Minami, Pardomuan Sitompul 289

Improving the Ability to Learn Math by Using Rubu’ al-Mujayyab Media
Muhammad Hidayat, Edi Syahputra, E.Elvis Napitupulu 293

The Impact of Education Cost and Government Spending the Interest Rate of Bank Indonesia
Subtitle
Julika Rahma Siagian, Dede Ruslan, Arwansyah 297

The Implementation of Problem Based Learning Models to Improve Mathematical Problem Solving Ability of Students on Arithmetic Materials in Class VII Junior High School
Elidar Tanjung, Izwita Dewi, Mulyono 301

The Effect of Learning Strategies to Trial By Jury in Participiantion Mathematics Learning Student of Junior High School
Rizka Patri Rahaya, Ani Minami, Zul Amry 305

The Differences Between The Effect of Realistic Mathematics Learning Approach to Conventional Learning with The Students Mathematics Learning Outcomes in Junior High School of 38 Medan Grade VII
Diah Ari Sapatri, Syafari 309

The Effect of Value National Exam Standards at Learning Achievement of Students at Senior High School
Nurdiana Fahmi, Bornok Sinaga, W. Rajagukguk 312

The Effect of Open Unemployment Rate and Level of Vocational High Education to Poverty in North Sumatera Province
Zulaili, Indra Maipita 315

The Application of Cooperative Learning of Think-Pair-Share (TPS) Type to Increase the Students’ Ability of Problem-Solving
Madriqah Fadhilah Siregar, Zul Amry, Syafari 320

The Relationship Between Metacognitive With the Results of Learning Outcomes on the Fungi Topic
Elizabeth, Herbert Sipahutar, Syahmi Edi 324

Comparison of DNA Isolation Methods from Economically Valuable Plants in Indonesia
Chairiyani Rizka, Fauziyah Harahap, Syahmi Edi 327

Development of Learning Device Based on Realistic Approach to Improve Problem Solving Ability Mathematic of Student at Junior High School
Susanna Romaria Harahap 333
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efforts to Improve Understanding and Use Concept of Additive Fractions and Reduction Using Media Comics on Model Cooperative Learning Type Student Team Achievement Division (STAD)</td>
<td>339</td>
</tr>
<tr>
<td>The Effect of Cooperative Learning Type Games Teams Tournament (TGT) of Mathematics Learning Outcomes in the Fractions Matter</td>
<td>342</td>
</tr>
<tr>
<td>Development of Authentic Mathematics Assessment in Application of Problem Based Learning Model to Improve Problem Solving Ability and Understanding of Student Mathematics Concept at Namorambe Secondary Private Middle School Junior High</td>
<td>347</td>
</tr>
<tr>
<td>The Increasing of Student’s Mathematics Problem Solving Ability and Learning Motivation Through Problem Based Learning Model</td>
<td>351</td>
</tr>
<tr>
<td>Dialect of Batakinese Language Used by Senior High School Students</td>
<td>358</td>
</tr>
<tr>
<td>The Effectiveness of Tandur Method of Improving Students’ Learning Ability in Junior High School</td>
<td>362</td>
</tr>
<tr>
<td>The Effect of Reciprocal Teaching Approach to Student Achievement on Ecosystem Topic in Junior High School</td>
<td>365</td>
</tr>
<tr>
<td>Improvement of Student Learning Result by Using Cooperative Learning Model of Teams Games Tournament Type on Algebra Fuction Limit</td>
<td>367</td>
</tr>
<tr>
<td>Noun Phrase of Culture Articles in The Jakarta Post</td>
<td>371</td>
</tr>
<tr>
<td>Application of Cooperative Learning Model Type Think Pair Share for Improved Communication</td>
<td>374</td>
</tr>
<tr>
<td>Implementation Model of School Policy in Constructing Behavior of Troubled Students</td>
<td>378</td>
</tr>
<tr>
<td>Efforts to Improving Creativity and Mathematics Learning Outcomes of Students With SPLET Strategy</td>
<td>382</td>
</tr>
<tr>
<td>The Influence of Physical Education in Establishment of Self Esteem</td>
<td>386</td>
</tr>
<tr>
<td>The Improvement of Dance Art Learning Achievement for Deaf Students Through Total Communication Application (Gesture/Signal) in Sekolah Luar Biasa (SLB) - E Negeri Pembina Tingkat Provinsi Sumatera Utara</td>
<td>390</td>
</tr>
<tr>
<td>Innovation of Media Video Compact Disc Instructional Pencak Silat for High School</td>
<td>393</td>
</tr>
<tr>
<td>Achievement Strategy of the Indonesian National Qualification Framework Based Curriculum Generic Description of Sport Education Postgraduate Program Universitas Negeri Medan</td>
<td>397</td>
</tr>
<tr>
<td>The Effect of Teaching Styles and Motor Ability as The Result of Study Dribbling Football</td>
<td>401</td>
</tr>
<tr>
<td>Semantic Analysis of English Loan Words in Indonesian Electronic Paper (Analisa)</td>
<td>404</td>
</tr>
<tr>
<td>Analysis of Empowerment of Competence Sinergy on Optimization of Education System</td>
<td>408</td>
</tr>
<tr>
<td>Inquiry-Based Video Learning Media For Overcoming Student Learning Difficulty (Case Study at State Junior High School 3 Lubuk Pakam Deliserdang District)</td>
<td>412</td>
</tr>
</tbody>
</table>
The Development of Mathematics Learning Tool Oriented on Problem Based Learning to Enhance Mathematics Problem Solving Ability and Self Efficacy

Solawati Nainggolan, Mulyono, Hasratuddin

The Effectiveness of Contextual Inquiry-Based Worksheet on the Matter of Fungi on Food Towards Students’ Higher-Order Thinking and Science Process Skills of Biology Education

Nurjamiah Siregar, Hasruddin, Syahmi Edi

The Function of Limits Mastery on Mathematics Learning Achievement in Derivative Subject at the Eleventh Grade of Madrasah Aliyah Yayasan Pendidikan Karya Setia Padangsidimpuan

Hasna Dewi Ritonga

Effect of Education Level, Income, Inflation on Community Consumption Pattern in North Sumatera Province

Nelly Hutajulu, Fitrawaty, M.Fitri Rahmadana

Application of Problem Based Learning Model Assisted by Cabri Software to Improve Problem Solving Ability of Mathematics Students

Ahmad Darmawan, Edi Syahputra, Kms. M. Amin Fauzi

Optimization of Academic Supervision Competence of High School Supervisor in Karo Regency with Critical Events Model (CEM)

Karyawan Keliat, Yasaratodo Wau, Irsan

The Concept of Physics Learning Media Based Computer Animation

Ratna Tanjung, Mukhtar, Efendi Napitupulu

Cultivating Children’s Critical Attitude with Educational Philosophy

Daulat Saragi
The Development of Mathematics Learning Tool Oriented on Problem Based Learning to Enhance Mathematics Problem Solving Ability and Self Efficacy

Solawati Nainggolan
State University of Medan
Medan, Indonesia
solawatinainggolan@gmail.com

Mulyono
State University of Medan
Medan, Indonesia

Hasratuddin
State University of Medan
Medan, Indonesia

Abstract—problem-solving skills are essential to improving math skills. It can increase logical, systematic, and creative skill and thinking. In high school most problem solving skill are still low, its because learning model used not exactly and the teacher haven’t preparation while teaching, so mathematics learning not interesting. It is necessary to develop learning tools to make learning effective. Researchers do development of learning tools that its student book, teacher book, Learning program plan, student worksheet and problem-solving test with the learning model used problem based learning. Expected that students problem solving ability can be increased and students are interested and love learning math, so that the learning becomes effective. This research use research improvement Thiagarajan, Semmel and Semmel by 4D model. There are 4 step development processing: define, design, develop and disseminate. Population in this research is all of student class X high school Yayasan Pendidikan Keluarga (YPK) medan school year 2016/2017 taking samples from 2 class room which totally there are 64 students and material is trigonometry. learning tools that have been declared valid by validator. In the trial 2 stages in two different classes, the second test new results obtained that the learning tools can and easy to use can be said practical so that effectively improve the ability of problem solving and self efficacy students.

Keywords—learning tools, problem based learning, mathematical problems solving ability, self efficacy

I. INTRODUCTION

Mathematics courses need given to all learners from elementary school, to equip learners with logical, analytical, systematic, The students ability to have the ability acquire, manage, and utilize information to live better in ever-changing circumstances, not sure, and highly competitive. Dahlia (2016) further in her research says "Mathematics learning has an important role in developing logical, systematic, and creative skill and thinking".

Principles NCTM explains: "Effective mathematics teaching requires understanding what students know and need to learn and then challenging and supporting them to learn it well".

Teachers should focus their activities and preparing tasks interesting enough to stimulate students to engage naturally. The teacher makes the students responsible for their learning process, with extensive and profound material mastery, the teacher is more likely to ask questions that require students to involved naturally, then Dahar (2006) explained that it can be done by teachers rich in knowledge through approaches and methods of teaching and able to apply in accordance with teaching materials. So it is clear that learning can produce maximum results if the teacher can implement a truly effective teaching, ideally a teacher should be able to map the strategies he will use in approaching, designing, managing the learning process for students.

A teacher should have professional skills that support a teacher's performance. "The implementation of a competency-based curriculum is largely determined by the ability of teachers in developing learning tools, namely the development of syllabus, textbooks, learning resources and media, instructional models, assessment instruments, and implementation plans of learning" (Wasrono, 2015) Development of instructional tools need to be implemented in the practice of daily learning in educational units. However,
the daily practice of teaching in schools is still experiencing various problems with regard to the learning devices used to operate the learning path. Problems teachers in using learning tools are also found in high school Yayasan Pendidikan Keluarga (YPK) Medan.

The ability to develop learning tools is part of efforts to improve the quality of education. In addition, other points that can support the learning process is the ability possessed by the students themselves. The low math skills of students in Indonesia is a classic problem that is still a dilemma in the world of education to date. Similarly research Ayu Aji et al (2015) said that "the success of students who are less than optimal in achieving learning outcomes is possible because of learning difficulties in students. Students with learning difficulties tend to have difficulties in solving problems both in the classroom and in life issues ".

One of the math skills that needs to be developed is the problem-solving ability. This is because mathematics can not be separated from challenges and mathematical problems. As Silver and Marshal (1990) says, "when solving mathematical problems, students adapt and broaden their existing understanding by linking new information with knowledge their current knowledge and building new relationships within their knowledge structures" (Ida kadarsih , 2015).

Problem solving is seen as a process to determine the combination of a number of rules that can be applied in an effort to cope with the new situation. Problem-solving skills are very important for students and their future, their previous knowledge is the basis for information retrieval. Furthermore, Hasratuddin said (2015: 69) that "the problem of the real world is a non-routine problem. Through the use of non-routine problems, students are not only focused on solving problems with existing strategies, but also realizing the power and usefulness of mathematics around the world and practicing the investigation and application of various mathematical concepts he has learned in the classroom.

Student's weakness in applying mathematical concept due to low ability of problem solving of student mathematical problem. As long as the researcher did observation, the researcher observed that the students tend to be passive in following the process of learning mathematics in the classroom. Students tend to feel fearful and anxious when expressing their opinions, even the students are afraid to ask questions about the less understood.

The number of studies that try to improve problem solving ability, it is clear that the ability of problem solving mathematics students is still low, so the need for efforts or ways to further improve it. Based on some of the above opinions, the ability to solve mathematical problems must be possessed by students to train to be accustomed to facing various problems, whether problems in mathematics, problems in other fields of study, or problems in everyday life are more complex. Therefore, the ability of students to solve mathematical problems need to be continuously trained so that students can solve problems encountered.

In addition to students 'mathematical problem-solving abilities, self-efficacy also influences students' knowledge and understanding of mathematics. Self Efficacy is a psychological aspect that contributes to the success of a student in completing the task well. Having a strong confidence will make a person has the motivation, courage, perseverance in carrying out the given task, and vice versa. Having a low self-esteem will shy away from difficult tasks, quickly give up when faced with problems or math challenges.

Marlina et al (2014) says that "the successes and failures experienced by students can be viewed as a learning experience. This learning experience will produce self-efficacy of students in solving problems so that their learning ability will increase, it needs positive self-efficacy in learning so that students can achieve their learning objectives and achieve maximum learning achievement ".

From the observation of the researchers, students in SMK YPK Medan have self efficacy students who are low. From the result of observation and interview can be seen from: (1) students who are generally passive waiting for answers from their friends or from teachers, (2) Students are not confident to express their opinions and generally will only answer when appointed by the teacher. When the researchers asked directly to some students, they admitted they were afraid of being wrong and some admitted that they did not like mathematics.

Teachers should really be able to choose the right model of spreading, which can shape students' understanding with meaningfulness that they can. Driver (1988) says "Significant construction can take place through interaction with meaning, text, through interpersonal negotiation or internal reflection" (Dahar, 2006: 166).

The use of learning models that are not in accordance with the development of students will impact tehapid stage of student learning development. Learning that is always focused on the teacher will cause the students' knowledge is less developed. The demands of the K-13 curriculum are to activate the students, as stated in Permendikbud no 60 annex III (2014) says “one of the models discussed and developed is Problem Based Learning”.

Furthermore, Hasratuddin (2015: 137) says that "the vision of contemporary education is the mastery of concepts in mathematics learning used to solve problems”. Meanwhile, according to Suyatto (2009) in permendikbud no 60 said that “The problem-based learning model is the learning process that the starting point of learning begins based on the problem in real life students are stimulated to learn the problems based on knowledge and experience they have previously (prior knowledge) to form knowledge and new experience ".

Teachers should be able to develop tools tailored to the right model, so as to enable students to be active and develop existing knowledge to gain new knowledge and be able to understand the meaningfulness of learning mathematics itself. From the description of the above problems, researchers interested in conducting research related to the mathematical ability of the students and its relation to the existence of learning tools mathematics. The title of the research is:
"Development of Learning Device through problem based learning to improve problem solving ability and Self Efficacy of grade X students of SMK YPK Medan"

II. LITERATURE

A. Quality of Mathematics Learning Tool

Criteria of a high quality learning according to Nieveen (2007) "for product quality consisting of the following three criteria: validity, practicality and effectiveness". That is to determine the quality of instructional device development results required several criteria including: validity, practicality and effectiveness.

B. Basic concepts Problem Based Learning

Arends (in permendikbud, 2014) says that: "The problem-based learning model is a learning approach in which students work on authentic issues with the intent to develop their own knowledge, develop inquiry and higher-order thinking, develop self-reliance and self-confidence.

Problem Based Learning is not developed based on learning theory or psychological theory although the PBL process involves the use of metacognition and self-regulation. PBL is known as progressive active learning and is a teacher-centered learning approach but should be student-centered, and use unstructured problems as the beginning and beginning of learning (Minarni, 2013). Problem Based Learning Syntax is student orientation on problem, mengorganisasi student to learn, guide individual or group investigation, develop and present the work. Analyze and evaluate problem solving process (Trianto, 2010: 98)

C. Problem Solving

Schroeder and Lester (in Hasratuddin, 2015: 70) describes three ways of interpreting classroom mathematical problem solving, teaching for problem solving, teaching about problem solving, and teaching through problem solving via problem solving). Further explained the purpose of teaching for problem solving is to inculcate mathematical concepts so that students can apply their knowledge to solve problems. Therefore, students are given ways to solve routine or non-routine problems. Teaching about problem solving is teaching strategy, or heuristics, in order to solve problems. The way used is to teach the 4 steps developed in Polya (1985), namely: understanding the problem, devise a plain, Carrying out the plain, and Looking Back

D. Self Efficacy

According to Bandura (1999: 2) that self-efficacy refers to beliefs in one's capabilities to organize and execute the courses of action required to manage prospective situations. Efficacy beliefs influence how people think, feel, motivate themselves, and act ". The point is that self-efficacy refers to a belief in one's ability to organize and implement a set of actions needed to manage a prospective situation. Such beliefs affect how people think, feel, motivate themselves, and act. Bandura is a social psychology student whose writings are mostly about self-efficacy, giving the understanding of cell-efficacy still general. The phrase 'particular situation' is broad-ranging, since self-efficacy is needed in all fields, including in mathematics learning, and more specifically in the situations students encounter and solve math problems. Huda (2013: 59) says "what teachers should do is develop a learning environment where all students can develop their own progress and motivation to move. Self-efficacy that is formed will affect and provide functionality on individual activities

III. METHOD

This research was conducted at SMK YPK Medan. The subjects of this study were the students of class X AP-1 and X AP-3 academic year 2016/2017. This research type is research of learning device development which developed is teacher book, student book, lesson plan (RPP), Student Worksheet (LKS), instrument of problem solving test and Self-Efficacy questionnaire. This research research using Thiagarajan, Semmel and Semmel. The Thiagarajan model consists of four stages known as the 4-D model. These are the defining stages of define, design, develop, and disseminate. Learning tools are assessed based on the criteria of Nieveen (2007). The criteria assess the quality of learning tools based on three aspects: (1) Validity (Validity); (2) Practical; and (3) Effectiveness. Data analysis techniques used in this research is Content validation based on the opinion of five experts in the field of mathematics education. The criteria for the validity of Subjects as follows:

<table>
<thead>
<tr>
<th>No</th>
<th>Va or average value</th>
<th>Criteria validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 ≤ Va < 2</td>
<td>Invalid</td>
</tr>
<tr>
<td>2</td>
<td>2 ≤ Va < 3</td>
<td>less valid</td>
</tr>
<tr>
<td>3</td>
<td>3 ≤ Va < 4</td>
<td>enough Valid</td>
</tr>
<tr>
<td>4</td>
<td>4 ≤ Va < 5</td>
<td>Valid</td>
</tr>
<tr>
<td>5</td>
<td>Va</td>
<td>very Valid</td>
</tr>
</tbody>
</table>

Note: Va is the value of determination level validity Subjects trigonometri.

The criteria stated teaching materials have a good degree of validity, if the validity of the minimum level reached is valid (4 ≤ Va <5).

Practical analysis of learning tools can be determined by the validator assessment consisting of experts and practitioners stating that the learning device components developed can be used and also the level of active student activity can be seen from the percentage of students who absorb information and percentage of interference from other students during the learning process. The level of student activity is also determined by comparing the allocation of learning time used with the ideal time percentage used for each student activity activity.
Analysis of the effectiveness of learning device data can be determined by Analysis of students' learning mastery data and student response analysis. The criterion states that students are said to have mathematical problem solving abilities when 80% of the students who take the test have the ability to solve the mathematical problems at least obtain values greater than or equal to 2.66 or at least B - (Rick, 2015)

The data analysis of mathematical problem solving and Self Efficacy can be determined by N-Gain formula:

\[N-Gain = \frac{posttest score - pretest score}{maximum possible score - pretest score} \]

Gain index criteria are:
- g > 0.7 : High
- 0.3 < g : Medium
- g < 0.3 : Low (Hake, 1999)

IV. RESULT AND DISCUSSION

A. Define

Stage definition with 5 steps is the beginning-end analysis, student analysis, concept analysis, task analysis, and specification of learning objectives. Indicators generated in the objectives of the learning objectives are used as a basis in the preparation of the design of learning tools with the trigonometric material. Analysis start from interview with teachers, analyze math curriculum, analyze and meriview reference books that can be used to teach the subjects of mathematics, as well as studying the characteristics of the students.

B. Design

In this study the learning tools developed are teacher book, student book, RPP, LKS, instrument problem solving test and Self Efficacy questionnaire Instrument.

- **a. Learning Implementation Plan**
 - Learning implementation plan arranged for 4 meetings each contains. Identification of subjects, standards of competence, basic competence, indicators, learning objectives, teaching materials, fittings, learning models, learning scenarios and assessment of learning outcomes. The material at determines the trigonometric ratio of an angle to a right triangle, a special angle, and a related angle, resolving a problem related to the ratio of trigonometry.

- **b. Book**
 - Based on the analysis of front-end, designed a trigonometry teaching materials based on student-based learning. The book contains material developed problems related to the comparison of trigonometry to be solved by the students in groups and independently. Teaching materials in the book using the concept of questions and explanations that support the process of problem solving. Trigonometry Teaching materials problem based learning is focused on improving students mathematical problem solving abilities.

- **c. Student Worksheet**
 - Student worksheet arranged for four meetings about trigonometric issues. Student worksheet is designed for problem solving.

- **d. Mathematical problem solving ability test and self efficacy**
 - Problem solving is based on the trigonometric material indicator, which is a problem in everyday life to improve the problem solving abilities of mathematics which amounted to 5 questions, while the self-efficacy questionnaire of students as much as 24 items.

C. Develop

- **a. Validation**
 - Validation of implementation plan, books, worksheets and problem solving tests conducted by experts and practitioners. Validation of experts made to produce equipment and instruments eligible. The expert in this case is the validator competent covering Lecturer Mathematics Education courses Unimed, teacher in SMK YPK. Based on the results of expert assessment then made revisions to devices and instruments. Advice from validator is used for the improvement of devices and instruments.

 Following the assessment of validators:

 - **Table.3 Validation results**
Based on the validation results of the implementation of the plan, books, worksheets and tests of validation problems that the valid developed, while problem-solving and self-efficacy questionnaires can be used with little revision.

b. Practically Test
The first criterion, from the experts' / validators and practitioners (teachers) is that on the basis of the criteria of practicality first been filled which can be used with little revision. If learning with a time-developed device is less than ordinary learning and the device is easy to use, then it can be said to be practical.

c. Effectiveness Test
The effectiveness of teaching materials in terms of:

1. Mastery Learning
 a. Analysis of problem-solving abilities
 In the first test, the students' mathematical problem solving ability is \(g = 0.39 \) or in the medium category. While in trial II, obtained by mathematical problem of student equal to \(g = 0.51 \) or is in medium category.
 From the result of students' learning mastery analysis on mathematical problem solving ability in trial I, there were 22 complete students (68.7%) from 32 people, and in trial II there were 28 complete people (87.5%) from 32 students. It was concluded that this criterion was achieved.
 b. Data Analysis Enhancement Self Efficacy students
 In the first experiment I obtained an increase in student self-efficacy of \(g = 0.57 \) or in the medium category. While in trial II obtained improvement of student self-efficacy equal to 0.68 or in high category.
 From the result of students' learning mastery analysis on mathematical problem solving ability in trial I, there were 22 complete students (68.7%) from 32 people, and in trial II there were 28 complete people (87.5%) from 32 students. It was concluded that this criterion was achieved.
 c. Student Response
 The result of student response analysis is positive if more than or equal to 80% student response is in positive katerei. In trial I and II trial more than 80% of students were in positive category on every aspect of learning device response.
 From this means learning devices meet the effective criteria.

D. Desseminate
After the field trial, and obtained an effective learning tool and improving students' math problem solving skills, the next step is to socialize learning tools that have been tested, this activity is done in a limited way on the subject teacher consultation forum, the result of this stage is recommending to all teachers to use this device as one of the alternative learning on Trigonometry students of SMK Class X.

A study tool "How validity of Trigonometry teaching materials based problem to improve mathematical problem solving students in class X SMK Yayasan Pendidikan Keluarga Medan?" Has been answered based on the validation of the validator, the learning device of Trigonometry problem solving measure as, Sugiyono, (2008: 173) argues that the instrument is valid means of measuring instruments used to obtain data (measures) were valid. Valid means the instrument can be used to measure what should be measured.

The results of validation of teaching materials for materials are formulated as valid. This means that the material presented on teaching materials is the loading indicator of the ability of understanding the problem, devising a plan, carrying out the plan, looking back. Problems can encourage students to improve the ability of mathematical problem solving students, want to measure.

The second criterion is the activity of students during the learning activity has met the criteria of tolerance of the ideal time set. In trial I there are two categories of activities whose percentage is not in the ideal time tolerance interval set i.e category of attention / listening explanation of teacher / friend and Reading, understanding of contextual problem in student book and LKS. While in trial II all student activities have been at the ideal time tolerance interval set so that concluded this criterion has been reached. When linked to student activities in the process of applying the problem-based learning model with piaget theory, it is stated that social interaction in learning activities with friends or groups or outside the group has a great influence in children's thinking. In another section John Dewey (Trianto: 2009) describes learning based on the problem is the interaction between the stimulus and the response is the relationship between the two directions of learning and the environment. Given the conditions and processes and learning activities are expected to make students as independent learners.

Ability to solve mathematical problems is understanding the problem, devising a plan, carrying out the plan, looking back. After learning using learning-oriented learning model based on the problem, obtained post result of 32 students there are 22 students (67.5%) who obtained value greater than or equal to 2.66 or at least B-). The most improved indicator in test I is the indicator to understand the problem. This is because the nature of problem-based learning is learning that always raises problems or questions to students. Therefore, the students will be familiar with the mathematical problems consequently the students will be able to understand the mathematical problems.

Based on the results of data analysis of student responses on test I and II obtained the CONCLUSION that students have a positive response to the components and learning activities. Positive responses of students can not be separated from the conditioning of learning with the model of learning based on the problem, among others: the problems posed on students derived from contextual problems that are close to the real world students or can be reached by the imagination of students to show the use of mathematics in the life of students through solution to problem. Student responses on
trial I and trial II always meet the specified criteria. This indicates that the application of learning tools developed oriented learning model based on problems can foster motivation and interest learning students in carrying out learning.

Furthermore, from the results of the research on trial II after the learning was obtained that of 32 students who followed the postes there were 28 students (87.5%) who got the value of more than or equal to 2.66 or at least B-. Besides the indicators understand the problem, the ability to solve the problem also experienced enhancement. This is because teachers help students understand the problem by providing scaffolding. scaffolding as a process of assisted learners to address a particular problem that is beyond its developmental capacity with the help of a teacher or a more capable person. From the results of research on the test I obtained improvements in student self efficacy by using learning tools using learning based on the problem. The increase in gain of self efficacy in test I is 0.57. The highest increase in the self efficacy indicator is the Magnitude or level indicator. The increase in self efficacy gain in trial II is 0.68. The highest increase in self efficacy indicators is also the Magnitude or level indicator.

This is because the problem-based learning model always confronts or poses a problem to the student. As a result students will get used to facing problems and also solve problems. This is also in line with students' ability to understand problems in mathematical problem solving indicators. Students will be accustomed to solve problems, so students' confidence in solving problems will increase.

Increased self efficacy of students will have an impact on students' mathematical problem solving skills in general. Students who have high self efficacy will be confident and better able to solve math problems. It can be concluded that the higher the students' self efficacy, the mathematical problem solving ability will also be higher. Problem-based learning is student-centered learning. Therefore, learning based on the problem of designing students' curiosity as well as motivating students to become independent learners. Therefore, the self-confidence or self efficacy of students will increase.

V. CONCLUSION

Based on the development and testing that has been done, the conclusion as follows:

a. Valid

Based on the validator's assessment, learning tools are developed in the form of RPP with validity score 4.38, Student Activity Sheet (LKS) with validity score 4.36, Book of Teacher (BG) validity score 4.39, and Student Book (BS) score validity 4.44. From the results it is concluded that the average validator gives a good level of validity value, this means learning tools valid / fit to use. As for mathematical problem solving test and self efficacy validity validator questionnaire that mathematical problem solving test and self efficacy questionnaire can be used.

b. Practical

The first criterion, from the experts / validators and practitioners (teachers) is that on the basis of the criteria of practicality and if learning with a time-developed device is less than ordinary learning and the device is easy to use, then it can be said to be practical.

c. Effective

Effective learning tools measured from: (1) achievement of learning objectives or learning completeness in the classical 80% of students who follow the learning is able to achieve a minimum value of 2.66 or B-. (2) at least 80% of the many subjects studied provide a positive response to the device and learning activities. Completeness of learning conducted on the pilot activity I reached 67.5%, and II test activities reached 87.5%. Student responses from the results of questionnaire responses of students on trial I and trial II obtained the result that more than 80% of students give a positive response on each aspect of the response. There is an improvement in students' mathematical problem solving skills using the device. problem-based learning on trigonometric topics with gain = 0.39 and trial gain = 0.51. And also increase the ability of self efficacy at trial I gain = 0.57 and trial gain gain = 0.68